

Linking NCEP Operational Model Development with NOAA Testbeds

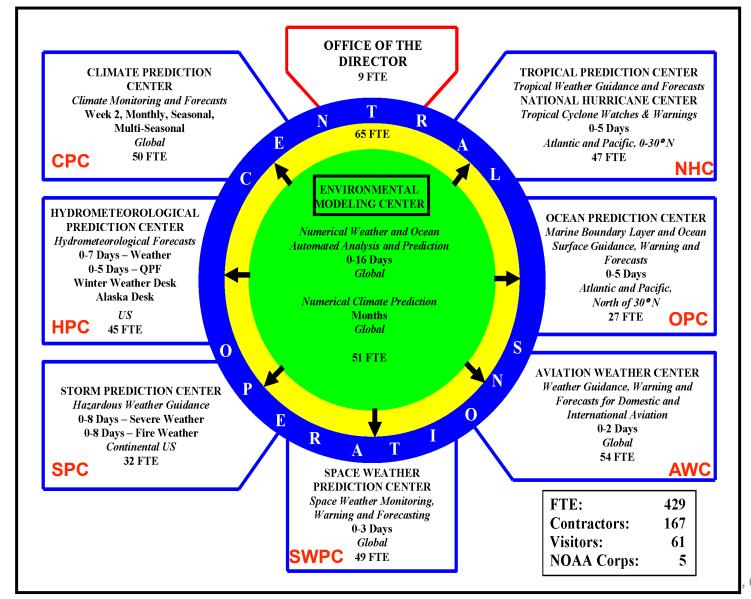
William Lapenta, Stephen Lord and Naomi Surgi

NCEP Environmental Modeling Center

05 May 2010

"Where America's Climate, Weather and Ocean Services Begin"

Outline


DISCLAMER---focused on implementing improvements to the NCEP operational numerical guidance system

- NCEP Structure
- EMC Mission
- Production Suite and Implementation Process
- □ Transition of Research to Operations
- Recommendations

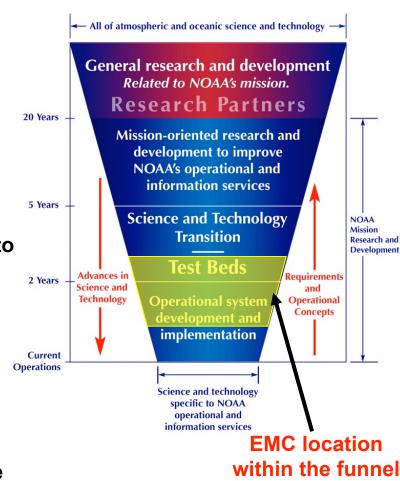
The National Centers for Environmental Prediction

The EMC Mission.....

In response to operational requirements:

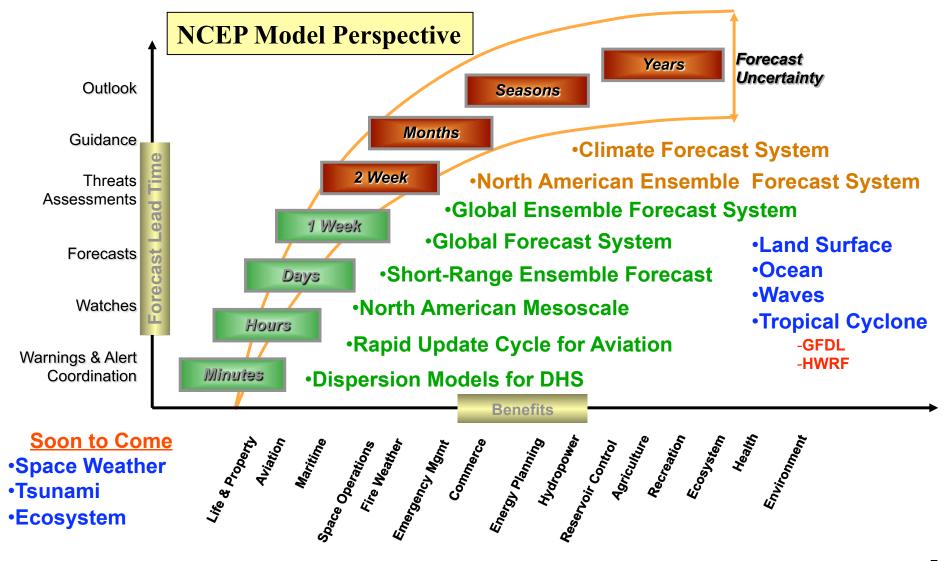
- **Develop and Enhance** numerical guidance
 - Improve NCEP's numerical forecast model systems via:

45%


Scientific upgrades

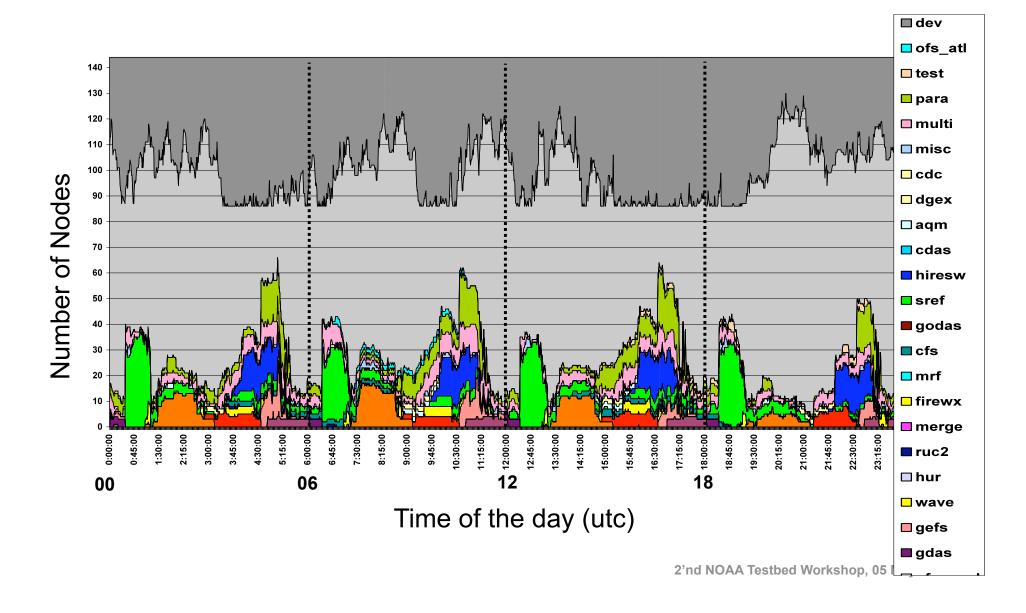
Optimization

- Additional observations
- Maintain operational model suite
 - The scientific correctness and integrity of operational forecast modeling systems
 - Modify current operational system to adapt to ever-present external changes
- <u>Transition</u> operational numerical forecast models from research to operations
 - **Transform & integrate**
 - Code

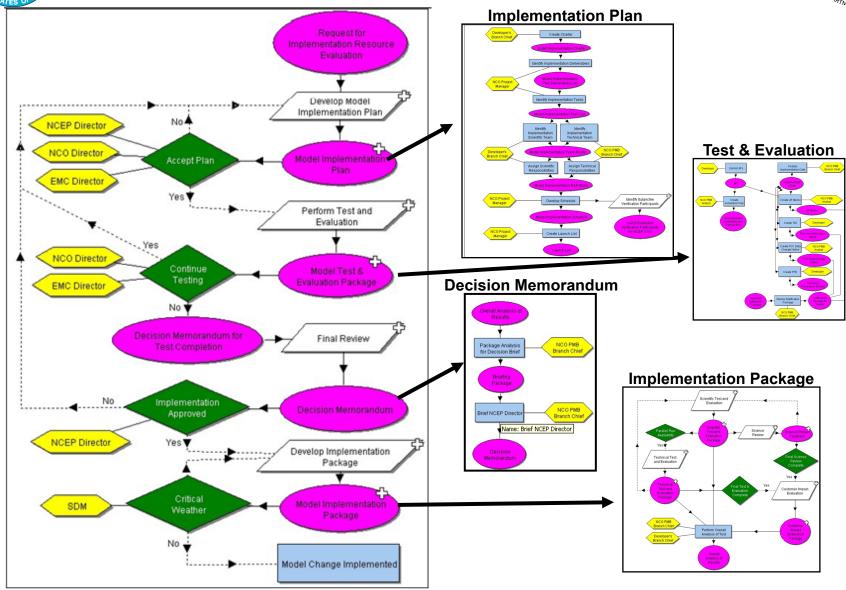

30%

- Algorithms
- Techniques
- Manages and executes transition process including technical and system performance review before implementation

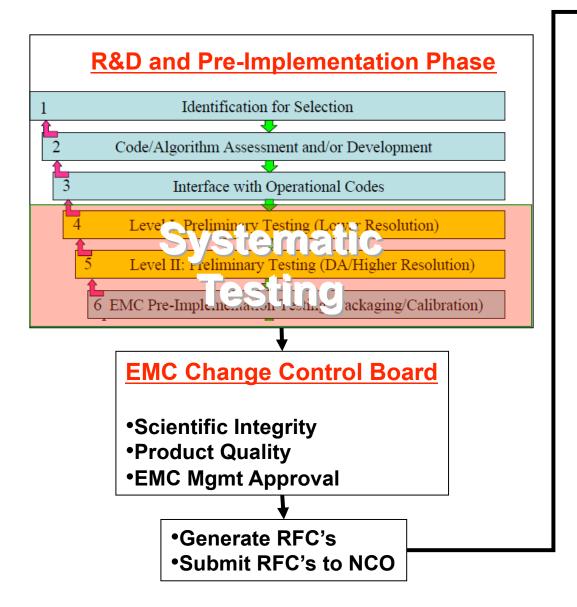
"Foundational" NOAA/NWS Operational Numerical 📶 🧰 **Guidance Spanning Weather and Climate**



Operational Production Suite Profile on the High Performance Computing System



Process to Implement Major Upgrades to The NCEP Model Production Suite



Process to Implement Major Upgrades to The NCEP Model Production Suite

Implementation Phase

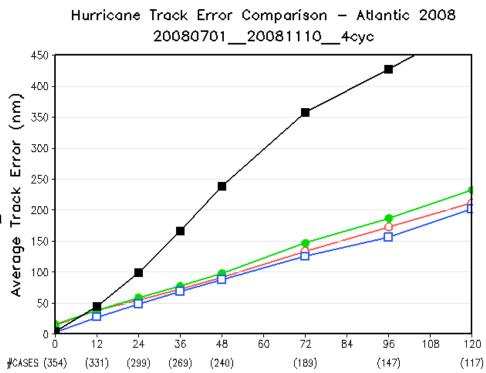
- SPA's build NCO parallel from RFC's
- 30-day NCO parallel
 - ■Test code stability
 - Test dataflow
 - ■Products to NCEP Centers and EMC code developers
- NCEP Centers
 - Evaluate impact
 - Assessments to NCEP OD
- •30-day NCO parallel stable
- NCEP centers approve
- Briefing to NCEP Director for final approval

Implementation

Apply Implementation Processes to GFS/GSI December 2009 Upgrade...

Adding new observation data sources.

- Tropical storm pseudo sea-level pressure obs
- NOAA19 hirs/4, AMSU-A, & MHS brightness temp obs
- NOAA18 sbuv/2. Monitor N19 GOME, and OMI ozone (no assimilation)
- RARS (currently only EARS) 1B data
- **EUMETSAT-9** atm motion vectors


Implementing improved techniques in GSI analysis.

- Use uniform thinning mesh for brightness
- temp data
 Improvements to assimilation of GPS RO data (QC, retune ob errors, improved forward operator)
- Add dry mass pressure constraint
- Merge GMAO & EMC codes for 4d-var capability
- Update background error covariance
- Proper use of different spectral truncation between background and analysis

Benefits

- Improved GFS tropical storm track & intensity forecasts
- Small improvement in global forecast accuracy

2008 Hurricane Season

GSI/GFS Bundle - Red Operational GFS - Green

Time and Resources Consumed for GFS/GSI December 2009 Implementation

- >17 months required to develop, test and implement
- ➤ 119 person months of effort (EMC, NCO, GFDL, TPC, SPC, HPC, AWC)
- ➤ 17 months of continuous cycles 4/day with 16 day forecasts retrospective/real-time testing conducted for GFS/GSI
- ➤ 500 HWRF and 600 GFDL TC/Hurricane cases simulated
- > 1000 Node hours and 75 TB of disk consumed

Challenges Associated with Working with Testbeds

(Specific to NCEP Operational Modeling systems)

- Modeling is a common thread between NOAA testbeds >JHT, HMT, HWT, JCSDA, etc.
- Each testbed has unique characteristics
 - **≻**Mission
 - Governance and management structure
 - Funding sources and profiles
 - Computational assets
 - Interaction mechanisms with external community (immersion vs virtual)
 - Metrics for success (pubs, operational implementations, training modules, etc.)
- Scientific stewardship
- Collaboration within a secure IT environment
- Disciplined code management practice
- Rigorous testing and evaluation required
- Must fit into NCEP operational implementation process AA Testbed Workshop, 05 May 2020 11

Mapping Testbeds Into the EMC Organizational Structure

EMC Team/Branch	JHT	СТВ	HWT	НМТ	AWC	DTC	JCSDA	OSSE	OPG
Global Weather and Climate		Х		Х			Х	Х	
Mesoscale			Х	Х	Х	Х		Х	
Marine		Х							
Climate		Х							
Data Assimilation			Х	Х	Х	Х	Х	Х	
Hurricanes	Х					Х			
Land Surface	Х	Х	Х				Х		
Ensembles		Х	Х	Х	Х	Х			

- Alignment between testbed and NCEP/EMC missions is critical to success
- Some testbeds are able to provide support to NCEP staff to participate
- Land surface modeling team has been very successful working with NOAA/CPO outside the testbed system
- Data assimilation team is a core NCEP infrastructure

Recommendations

(Specific to NCEP Operational Modeling systems)

- Good communication is the key to success
- Exchange of staff with partner organization with long-term commitments:
 - DTC staff assigned to work at EMC (e.g., GSI, NEMS)
 - NWS/OST liaison at DTC
- Establish pre-implementation testing environment outside of EMC to help incorporate advances in operational systems
- Recognize, acknowledge and manage the different requirements (and constraints) of research and operational communities
 - Operations: robustness, efficiency, easy maintenance
 - > Research: flexibility, multiple-choices, community support

Recommendations (Cont.)

(Specific to NCEP Operational Modeling systems)

- Promote an environment where collaboration will thrive
 - > It's all about the people—the most valuable resource
 - Perceptions are important (listen & learn)
 - > Shared vision and perception of "value added"
 - Motivation and morale critical to success of ANY organization
 - ➤ Metrics for success--seeking alignment between the research and operational communities (within NOAA and external to)
 - Peer-review publications a critical metric for research community (NOAA Labs)
 - Implementations a critical metric for EMC scientists

Summary

The "research to operations" process is:

A partnership between researchers and users

WHO BOTH

<u>expend</u> nontrivial and sufficient <u>resources</u> toward realizing a product, process, or analytical objective.

